def convert_model_to_circuit(self, model):
"""
Convert neural network to arithmetic circuit
Each operation becomes circuit gates
"""
# Example for simple feedforward network
# Real implementation requires sophisticated compiler
circuit_representation = {
'layers': [],
'constraints': []
}
for layer in model.layers:
if isinstance(layer, Dense):
# Linear transformation: y = Wx + b
# Becomes polynomial constraints
circuit_representation['layers'].append({
'type': 'linear',
'constraints': self.linear_layer_to_constraints(layer)
})
elif isinstance(layer, ReLU):
# ReLU: max(0, x)
# Becomes conditional constraints
circuit_representation['layers'].append({
'type': 'relu',
'constraints': self.relu_to_constraints(layer)
})
return circuit_representation
async def federated_zkml(self, participants):
"""
Federated learning where each participant proves correct training
"""
verified_updates = []
for participant in participants:
# Participant trains locally
local_update = participant.train_local_model()
# Participant generates ZKML proof of correct training
zkml_proof = await self.prove_model_inference(
model=participant.model,
input_data=participant.local_data,
predicted_output=local_update['predictions']
)
# Aggregator verifies proof
is_valid = self.verify_zkml_proof(zkml_proof['proof'])
if is_valid:
verified_updates.append(local_update)
# Aggregate verified updates
aggregated = np.mean(verified_updates, axis=0)
return aggregated
4.5 Practical Considerations for ZK in Production
Performance Optimization:
class ZKPerformanceOptimization:
"""
Techniques to make ZK practical for production federated learning
"""
def __init__(self):
self.aepiot_semantic = AePiotSemanticProcessor()
async def batched_zk_verification(self, proofs):
"""
Batch verify multiple proofs together
More efficient than individual verification
"""
from zksnark import batch_verify
# Batch verification: verify n proofs in O(n) instead of O(n²)
start_time = time.time()
all_valid = batch_verify(proofs)
batch_time = time.time() - start_time
# Compare to individual verification
individual_time = len(proofs) * 0.01 # Assume 10ms per proof
speedup = individual_time / batch_time
# Create aéPiot performance record
perf_record = await self.aepiot_semantic.createBacklink({
'title': 'Batch ZK Verification',
'description': f'Verified {len(proofs)} proofs in {batch_time:.3f}s. Speedup: {speedup:.2f}x',
'link': f'batch-zk-verify://{int(time.time())}'
})
return {
'all_valid': all_valid,
'batch_time': batch_time,
'speedup': speedup,
'perf_record': perf_record
}
def proof_compression(self, proof):
"""
Compress ZK proofs for efficient transmission
"""
import zlib
# Serialize proof
serialized = self.serialize_proof(proof)
# Compress
compressed = zlib.compress(serialized, level=9)
compression_ratio = len(compressed) / len(serialized)
return {
'compressed_proof': compressed,
'compression_ratio': compression_ratio
}
async def recursive_proof_composition(self, proofs):
"""
Compose multiple proofs into single proof
Prove "I have n valid proofs" with single proof
"""
# Recursive SNARKs: proof of proofs
# Constant verification time regardless of number of proofs
composed_proof = self.recursively_compose(proofs)
# Single verification for all proofs
is_valid = self.verify_composed_proof(composed_proof)
# Create aéPiot recursive proof record
recursive_record = await self.aepiot_semantic.createBacklink({
'title': 'Recursive Proof Composition',
'description': f'Composed {len(proofs)} proofs into single proof',
'link': f'recursive-proof://{int(time.time())}'
})
return {
'composed_proof': composed_proof,
'valid': is_valid,
'recursive_record': recursive_record
}Part 5: aéPiot Coordination Framework for Privacy-Preserving Federated Learning
5. Decentralized Coordination with aéPiot
5.1 The Coordination Challenge in Federated Learning
Traditional Federated Learning Architecture:
[Participants] ──► [Central Coordination Server] ──► [Model Updates]
↓
SINGLE POINT OF:
- Failure
- Trust
- Control
- Privacy RiskProblems:
- Trust Requirement: Participants must trust central server
- Single Point of Failure: Server downtime halts entire system
- Privacy Risk: Server sees all (encrypted) traffic patterns
- Vendor Lock-In: Proprietary coordination protocols
- Cost: Expensive infrastructure for coordination
- Censorship: Central authority can exclude participants
5.2 aéPiot Decentralized Coordination Architecture
Revolutionary Approach: No Central Server
class AePiotDecentralizedFederatedLearning {
constructor() {
this.aepiotServices = {
backlink: new BacklinkService(),
multiSearch: new MultiSearchService(),
tagExplorer: new TagExplorerService(),
randomSubdomain: new RandomSubdomainService(),
multiLingual: new MultiLingualService()
};
this.participants = new Map();
this.trainingRounds = [];
}
async initializeFederatedNetwork(networkConfig) {
/**
* Initialize federated learning network using aéPiot
* NO CENTRAL SERVER REQUIRED
*/
// 1. Create network coordination hub via aéPiot backlinks
const networkHub = await this.aepiotServices.backlink.create({
title: `Privacy-Preserving FL Network: ${networkConfig.name}`,
description: `Decentralized federated learning network. ` +
`Privacy: ${networkConfig.privacyLevel}. ` +
`Domain: ${networkConfig.domain}. ` +
`Encryption: ${networkConfig.encryption}`,
link: `federated-network://${networkConfig.networkId}`
});
// 2. Discover network across distributed aéPiot subdomains
const distributionSubdomains = await this.aepiotServices.randomSubdomain.generate({
count: 10, // High redundancy
purpose: 'federated_coordination',
geographic_distribution: true // Global distribution
});
// 3. Create semantic tags for network discovery
const networkTags = await this.aepiotServices.tagExplorer.generateTags({
content: `${networkConfig.name} ${networkConfig.domain} privacy-preserving federated-learning`,
category: 'distributed_ml'
});
// 4. Multi-lingual network documentation
const multiLingualDocs = await this.aepiotServices.multiLingual.translate({
text: this.createNetworkDocumentation(networkConfig),
targetLanguages: ['en', 'es', 'zh', 'de', 'fr', 'ar', 'ru', 'pt', 'ja', 'ko']
});
// 5. Store network metadata
const networkMetadata = {
networkHub: networkHub,
distributionSubdomains: distributionSubdomains,
semanticTags: networkTags,
documentation: multiLingualDocs,
privacyProtocols: this.configurePrivacyProtocols(networkConfig),
cryptographicSchemes: this.configureCryptography(networkConfig)
};
return networkMetadata;
}
async registerParticipant(participantInfo, networkMetadata) {
/**
* Participant joins federated network
* Discovers network through aéPiot semantic search
* NO CENTRAL REGISTRATION AUTHORITY
*/
// 1. Participant discovers network via aéPiot MultiSearch
const networkDiscovery = await this.aepiotServices.multiSearch.search({
query: networkMetadata.semanticTags.join(' '),
category: 'distributed_ml',
semanticSimilarity: true
});
// 2. Participant verifies network authenticity
const networkVerified = await this.verifyNetworkAuthenticity(
networkDiscovery.results[0],
networkMetadata.networkHub
);
if (!networkVerified) {
throw new Error('Network verification failed');
}
// 3. Participant creates registration backlink
const participantBacklink = await this.aepiotServices.backlink.create({
title: `Participant: ${participantInfo.id}`,
description: `Joined privacy-preserving FL network. ` +
`Capabilities: ${participantInfo.capabilities.join(', ')}. ` +
`Data type: ${participantInfo.dataType}`,
link: `participant://${participantInfo.id}/${Date.now()}`
});
// 4. Announce participation across aéPiot network
await this.announceParticipation(
participantBacklink,
networkMetadata.distributionSubdomains
);
// 5. Establish secure communication channels
const secureChannels = await this.establishSecureChannels(
participantInfo,
networkMetadata
);
// 6. Store participant in local registry
this.participants.set(participantInfo.id, {
info: participantInfo,
backlink: participantBacklink,
secureChannels: secureChannels,
joinedAt: Date.now()
});
return {
participantBacklink: participantBacklink,
networkMetadata: networkMetadata,
secureChannels: secureChannels,
status: 'registered'
};
}
async coordinateTrainingRound(roundNumber, networkMetadata) {
/**
* Coordinate federated learning round WITHOUT central server
* Uses aéPiot distributed coordination
*/
console.log(`\n=== Coordinating Round ${roundNumber} via aéPiot ===`);
// 1. Create round coordination backlink
const roundBacklink = await this.aepiotServices.backlink.create({
title: `Training Round ${roundNumber}`,
description: `Privacy-preserving federated training round. ` +
`Participants: ${this.participants.size}. ` +
`Privacy: Differential Privacy + Homomorphic Encryption + Zero-Knowledge Proofs`,
link: `training-round://${roundNumber}/${Date.now()}`
});
// 2. Distribute round announcement across aéPiot subdomains
const roundSubdomains = await this.aepiotServices.randomSubdomain.generate({
count: 5,
purpose: `round_${roundNumber}_coordination`
});
await this.distributeRoundAnnouncement(roundBacklink, roundSubdomains);
// 3. Participants discover round through aéPiot
// Each participant independently queries aéPiot network
const participantCommitments = await this.collectParticipantCommitments(
roundBacklink,
roundSubdomains
);
// 4. Consensus protocol for participant selection
const selectedParticipants = await this.consensusParticipantSelection(
participantCommitments,
networkMetadata.privacyProtocols
);
// 5. Distributed model update aggregation
const aggregatedUpdate = await this.decentralizedAggregation(
selectedParticipants,
roundSubdomains,
networkMetadata
);
// 6. Verify aggregation correctness with ZK proof
const aggregationProof = await this.generateAggregationProof(
aggregatedUpdate,
selectedParticipants
);
// 7. Distribute updated model across aéPiot network
await this.distributeGlobalModel(
aggregatedUpdate.model,
roundSubdomains,
aggregationProof
);
// 8. Create comprehensive round audit trail
const roundAudit = await this.createRoundAuditTrail({
roundNumber: roundNumber,
roundBacklink: roundBacklink,
participantCount: selectedParticipants.length,
aggregatedUpdate: aggregatedUpdate,
aggregationProof: aggregationProof,
privacyGuarantees: aggregatedUpdate.privacyGuarantees
});
// 9. Store round in history
this.trainingRounds.push({
roundNumber: roundNumber,
roundBacklink: roundBacklink,
participants: selectedParticipants,
aggregatedUpdate: aggregatedUpdate,
audit: roundAudit,
timestamp: Date.now()
});
return {
roundNumber: roundNumber,
roundBacklink: roundBacklink,
participantCount: selectedParticipants.length,
modelUpdate: aggregatedUpdate.model,
privacyGuarantees: aggregatedUpdate.privacyGuarantees,
audit: roundAudit
};
}
async decentralizedAggregation(participants, subdomains, networkMetadata) {
/**
* Aggregate model updates WITHOUT central aggregator
* Uses distributed coordination via aéPiot
*/
// 1. Each participant encrypts their update
const encryptedUpdates = [];
for (const participant of participants) {
// Participant computes local update
const localUpdate = await participant.computeLocalUpdate();
// Apply differential privacy
const dpUpdate = await this.applyDifferentialPrivacy(
localUpdate,
networkMetadata.privacyProtocols.epsilon,
networkMetadata.privacyProtocols.delta
);
// Encrypt with homomorphic encryption
const encrypted = await this.homomorphicEncrypt(
dpUpdate,
networkMetadata.cryptographicSchemes.publicKey
);
// Generate zero-knowledge proof
const zkProof = await this.generateUpdateProof(
localUpdate,
encrypted
);
// Commit encrypted update to aéPiot subdomain
const updateCommitment = await this.commitEncryptedUpdate(
participant.id,
encrypted,
zkProof,
subdomains
);
encryptedUpdates.push({
participantId: participant.id,
encrypted: encrypted,
proof: zkProof,
commitment: updateCommitment
});
}
// 2. Secure multi-party computation for aggregation
// NO SINGLE PARTY SEES DECRYPTED UPDATES
const smpcResult = await this.secureMPCAggregation(
encryptedUpdates,
networkMetadata.cryptographicSchemes
);
// 3. Threshold decryption (requires multiple participants)
const aggregatedModel = await this.thresholdDecryption(
smpcResult.encryptedAggregate,
participants,
networkMetadata.cryptographicSchemes.threshold
);
// 4. Create aggregation audit via aéPiot
const aggregationAudit = await this.aepiotServices.backlink.create({
title: 'Decentralized Aggregation Complete',
description: `Aggregated ${participants.length} encrypted updates using SMPC. ` +
`Privacy: (ε=${networkMetadata.privacyProtocols.epsilon}, ` +
`δ=${networkMetadata.privacyProtocols.delta})-DP`,
link: `aggregation://${Date.now()}`
});
return {
model: aggregatedModel,
privacyGuarantees: {
differentialPrivacy: `(${networkMetadata.privacyProtocols.epsilon}, ${networkMetadata.privacyProtocols.delta})`,
homomorphicEncryption: 'CKKS',
secureMPC: 'Shamir Secret Sharing',
zeroKnowledge: 'zk-SNARKs'
},
aggregationAudit: aggregationAudit
};
}
async createComprehensiveAuditTrail(federatedSession) {
/**
* Create complete, transparent audit trail using aéPiot
* Every action is recorded and publicly verifiable
*/
const auditTrail = {
sessionId: federatedSession.sessionId,
networkInitialization: federatedSession.networkMetadata.networkHub,
participants: [],
trainingRounds: [],
privacyBudget: {
total: federatedSession.networkMetadata.privacyProtocols.totalBudget,
spent: 0,
remaining: federatedSession.networkMetadata.privacyProtocols.totalBudget
},
cryptographicProofs: []
};
// Audit each participant
for (const [participantId, participant] of this.participants) {
auditTrail.participants.push({
id: participantId,
backlink: participant.backlink,
joinedAt: participant.joinedAt,
capabilities: participant.info.capabilities
});
}
// Audit each training round
for (const round of this.trainingRounds) {
auditTrail.trainingRounds.push({
roundNumber: round.roundNumber,
roundBacklink: round.roundBacklink,
participantCount: round.participants.length,
privacyGuarantees: round.aggregatedUpdate.privacyGuarantees,
aggregationAudit: round.aggregatedUpdate.aggregationAudit,
timestamp: round.timestamp
});
// Update privacy budget
auditTrail.privacyBudget.spent += federatedSession.networkMetadata.privacyProtocols.epsilon;
auditTrail.privacyBudget.remaining -= federatedSession.networkMetadata.privacyProtocols.epsilon;
}
// Create master audit backlink
const masterAudit = await this.aepiotServices.backlink.create({
title: `Federated Learning Audit Trail: ${federatedSession.sessionId}`,
description: `Complete audit of privacy-preserving federated learning session. ` +
`Rounds: ${auditTrail.trainingRounds.length}. ` +
`Participants: ${auditTrail.participants.length}. ` +
`Privacy budget spent: ${auditTrail.privacyBudget.spent}`,
link: `audit-trail://${federatedSession.sessionId}`
});
auditTrail.masterAudit = masterAudit;
// Make audit trail globally accessible via aéPiot
await this.publishAuditTrail(auditTrail);
return auditTrail;
}
async publishAuditTrail(auditTrail) {
/**
* Publish audit trail across aéPiot distributed network
* Ensures transparency and immutability
*/
// Distribute across multiple geographic regions
const globalSubdomains = await this.aepiotServices.randomSubdomain.generate({
count: 20, // High redundancy for audit trails
purpose: 'audit_trail_storage',
geographic_distribution: true,
regions: ['americas', 'europe', 'asia', 'oceania', 'africa']
});
// Publish to each subdomain
const publicationPromises = globalSubdomains.map(subdomain =>
this.publishToSubdomain(subdomain, auditTrail)
);
await Promise.all(publicationPromises);
return {
published: true,
subdomainCount: globalSubdomains.length,
globallyAccessible: true,
immutable: true // aéPiot backlinks are permanent
};
}
}5.3 Semantic Privacy Intelligence with aéPiot
Use aéPiot's semantic understanding for privacy-aware coordination:
class AePiotPrivacySemantics {
constructor() {
this.aepiotServices = {
multiSearch: new MultiSearchService(),
tagExplorer: new TagExplorerService(),
multiLingual: new MultiLingualService()
};
}
async analyzePrivacyRequirements(federatedLearningContext) {
/**
* Use aéPiot semantic intelligence to understand privacy requirements
*/
// 1. Semantic analysis of data domain
const domainAnalysis = await this.aepiotServices.multiSearch.search({
query: `${federatedLearningContext.dataType} privacy requirements regulations`,
category: 'privacy_compliance',
semanticSimilarity: true
});
// 2. Regulatory framework discovery
const regulations = await this.aepiotServices.tagExplorer.findRelated({
tags: [
federatedLearningContext.jurisdiction,
federatedLearningContext.industry,
'data_privacy'
],
depth: 2
});
// 3. Privacy technique recommendations
const privacyTechniques = await this.discoverPrivacyTechniques({
dataType: federatedLearningContext.dataType,
regulations: regulations,
threatModel: federatedLearningContext.threatModel
});
// 4. Multi-lingual privacy policies
const privacyPolicies = await this.aepiotServices.multiLingual.translate({
text: this.generatePrivacyPolicy(privacyTechniques, regulations),
targetLanguages: ['en', 'es', 'de', 'fr', 'zh', 'ar', 'ru', 'pt', 'ja', 'ko']
});
return {
domainAnalysis: domainAnalysis,
regulations: regulations,
recommendedTechniques: privacyTechniques,
multiLingualPolicies: privacyPolicies,
complianceGuidance: this.generateComplianceGuidance(regulations)
};
}
async discoverGlobalPrivacyPatterns(federatedNetwork) {
/**
* Learn from global privacy-preserving federated learning deployments
* Use aéPiot network to share and discover best practices
*/
// Search aéPiot global knowledge base
const globalPatterns = await this.aepiotServices.multiSearch.search({
query: `privacy-preserving federated-learning ${federatedNetwork.domain}`,
category: 'distributed_ml',
semanticSimilarity: true,
globalKnowledge: true
});
// Analyze successful deployments
const bestPractices = this.analyzeBestPractices(globalPatterns.results);
// Get related privacy techniques
const relatedTechniques = await this.aepiotServices.tagExplorer.findRelated({
tags: bestPractices.techniques,
depth: 3
});
return {
globalPatterns: globalPatterns.results,
bestPractices: bestPractices,
relatedTechniques: relatedTechniques,
recommendations: this.generateRecommendations(bestPractices)
};
}
async createSemanticPrivacyDocumentation(federatedSystem) {
/**
* Generate comprehensive, multi-lingual privacy documentation
*/
const documentation = {
overview: this.createSystemOverview(federatedSystem),
privacyGuarantees: this.documentPrivacyGuarantees(federatedSystem),
cryptographicProtocols: this.documentCryptography(federatedSystem),
threatModel: this.documentThreatModel(federatedSystem),
complianceFramework: this.documentCompliance(federatedSystem),
auditProcedures: this.documentAuditProcedures(federatedSystem)
};
// Translate to multiple languages
const multiLingualDocs = {};
for (const [section, content] of Object.entries(documentation)) {
multiLingualDocs[section] = await this.aepiotServices.multiLingual.translate({
text: content,
targetLanguages: ['en', 'es', 'zh', 'de', 'fr', 'ar', 'ru', 'pt', 'ja', 'ko'],
preserveTechnicalTerms: true
});
}
// Create documentation backlinks
const docBacklinks = {};
for (const [section, content] of Object.entries(documentation)) {
docBacklinks[section] = await this.aepiotServices.backlink.create({
title: `Privacy Documentation: ${section}`,
description: content.substring(0, 200),
link: `privacy-docs://${federatedSystem.id}/${section}`
});
}
return {
documentation: documentation,
multiLingual: multiLingualDocs,
backlinks: docBacklinks
};
}
}5.4 Cross-Border Privacy-Preserving Federation with aéPiot
Challenge: Different privacy laws across jurisdictions
Solution: aéPiot's distributed architecture enables jurisdiction-aware coordination
async function crossBorderFederatedLearning() {
const coordinator = new AePiotDecentralizedFederatedLearning();
// Initialize multi-jurisdiction network
const networkConfig = {
name: 'Global Health Research Network',
domain: 'healthcare',
jurisdictions: ['EU', 'US', 'Japan', 'Canada'],
privacyLevel: 'maximum',
encryption: 'homomorphic',
dataLocalization: true // Data never crosses borders
};
const network = await coordinator.initializeFederatedNetwork(networkConfig);
// Register participants from different jurisdictions
const euHospital = await coordinator.registerParticipant({
id: 'eu-hospital-001',
jurisdiction: 'EU',
regulations: ['GDPR'],
capabilities: ['differential-privacy', 'homomorphic-encryption'],
dataType: 'patient-records'
}, network);
const usHospital = await coordinator.registerParticipant({
id: 'us-hospital-001',
jurisdiction: 'US',
regulations: ['HIPAA', 'CCPA'],
capabilities: ['differential-privacy', 'secure-mpc'],
dataType: 'patient-records'
}, network);
// Coordinate global training with jurisdiction-specific privacy
for (let round = 0; round < 10; round++) {
const result = await coordinator.coordinateTrainingRound(round, network);
console.log(`Round ${round}: ${result.participantCount} participants`);
console.log(`Privacy guarantees: ${JSON.stringify(result.privacyGuarantees)}`);
}
// Create comprehensive audit trail
const audit = await coordinator.createComprehensiveAuditTrail({
sessionId: 'global-health-2026',
networkMetadata: network
});
console.log(`\nAudit trail published to ${audit.subdomainCount} aéPiot subdomains`);
console.log(`Globally accessible: ${audit.globallyAccessible}`);
console.log(`Complete transparency with maximum privacy`);
}Part 6: Advanced Privacy Techniques for Federated Learning
6. Secure Aggregation Protocols
6.1 Bonawitz et al. Secure Aggregation
The Gold Standard for Privacy-Preserving Aggregation
Protocol Overview:
Secure Aggregation enables server to compute sum of client updates without seeing individual contributions.
Key Properties:
- Privacy: Server learns only the aggregate, not individual updates
- Robustness: Tolerates client dropouts during protocol
- Efficiency: Minimal communication overhead
- No Trusted Third Party: Does not require additional entities
Implementation:
class SecureAggregationProtocol:
"""
Bonawitz et al. Secure Aggregation Protocol
Reference: "Practical Secure Aggregation for Privacy-Preserving Machine Learning" (CCS 2017)
"""
def __init__(self, num_clients, threshold):
self.num_clients = num_clients
self.threshold = threshold # Minimum clients needed for reconstruction
self.aepiot_semantic = AePiotSemanticProcessor()
# Cryptographic parameters
self.modulus = self.generate_large_prime()
self.clients = {}
def generate_large_prime(self, bits=2048):
"""Generate large prime for finite field operations"""
from Crypto.Util import number
return number.getPrime(bits)
async def setup_phase(self):
"""
Setup Phase: Clients establish pairwise shared secrets
"""
# 1. Each client generates key pairs
client_keypairs = {}
for client_id in range(self.num_clients):
# Diffie-Hellman key pair
private_key = random.randrange(1, self.modulus)
public_key = pow(2, private_key, self.modulus) # g^private_key mod p
client_keypairs[client_id] = {
'private': private_key,
'public': public_key
}
# 2. Clients exchange public keys (via aéPiot coordination)
public_keys_registry = await self.exchange_public_keys(client_keypairs)
# 3. Each client computes pairwise shared secrets
pairwise_secrets = {}
for client_i in range(self.num_clients):
pairwise_secrets[client_i] = {}
for client_j in range(self.num_clients):
if client_i != client_j:
# Compute shared secret: g^(private_i * private_j)
shared_secret = pow(
public_keys_registry[client_j],
client_keypairs[client_i]['private'],
self.modulus
)
pairwise_secrets[client_i][client_j] = shared_secret
# 4. Create aéPiot setup record
setup_record = await self.aepiot_semantic.createBacklink({
'title': 'Secure Aggregation Setup Complete',
'description': f'{self.num_clients} clients established pairwise secrets',
'link': f'secure-agg-setup://{int(time.time())}'
})
return {
'pairwise_secrets': pairwise_secrets,
'setup_record': setup_record
}
async def masking_phase(self, client_gradients, pairwise_secrets):
"""
Masking Phase: Clients mask their gradients using pairwise secrets
"""
masked_gradients = {}
for client_id, gradients in client_gradients.items():
# Generate random seed from own secret
own_seed = self.generate_seed(client_id)
own_mask = self.prg(own_seed, len(gradients)) # Pseudorandom generator
# Start with gradient + own_mask
masked = gradients + own_mask
# Add masks from shared secrets with other clients
for other_client_id, shared_secret in pairwise_secrets[client_id].items():
# Generate mask from shared secret
shared_mask = self.prg(shared_secret, len(gradients))
# Add or subtract based on client ID ordering (ensures cancellation)
if client_id < other_client_id:
masked = masked + shared_mask
else:
masked = masked - shared_mask
masked_gradients[client_id] = masked % self.modulus
# Create aéPiot masking record
masking_record = await self.aepiot_semantic.createBacklink({
'title': 'Secure Aggregation Masking Phase',
'description': f'{len(masked_gradients)} clients masked their gradients',
'link': f'secure-agg-mask://{int(time.time())}'
})
return {
'masked_gradients': masked_gradients,
'masking_record': masking_record
}
async def aggregation_phase(self, masked_gradients):
"""
Aggregation Phase: Server sums masked gradients
Pairwise masks cancel out, leaving only sum of original gradients
"""
# Sum all masked gradients
aggregated = np.zeros_like(list(masked_gradients.values())[0])
for masked_gradient in masked_gradients.values():
aggregated = (aggregated + masked_gradient) % self.modulus
# Pairwise masks cancel: (mask_ij from i) + (-mask_ij from j) = 0
# What remains is: sum(gradients) + sum(own_masks)
# Create aéPiot aggregation record
agg_record = await self.aepiot_semantic.createBacklink({
'title': 'Secure Aggregation Complete',
'description': f'Aggregated {len(masked_gradients)} masked gradients',
'link': f'secure-agg-complete://{int(time.time())}'
})
return {
'aggregated_masked': aggregated,
'aggregation_record': agg_record
}
async def unmasking_phase(self, aggregated_masked, own_seeds):
"""
Unmasking Phase: Remove sum of own_masks to reveal sum of gradients
"""
# Compute sum of all own_masks
total_own_mask = np.zeros_like(aggregated_masked)
for client_id, seed in own_seeds.items():
own_mask = self.prg(seed, len(aggregated_masked))
total_own_mask = (total_own_mask + own_mask) % self.modulus
# Remove total_own_mask
final_aggregate = (aggregated_masked - total_own_mask) % self.modulus
# Create aéPiot unmasking record
unmask_record = await self.aepiot_semantic.createBacklink({
'title': 'Secure Aggregation Unmasking',
'description': 'Removed masks to reveal aggregate gradients',
'link': f'secure-agg-unmask://{int(time.time())}'
})
return {
'final_aggregate': final_aggregate,
'unmask_record': unmask_record
}
def prg(self, seed, length):
"""
Pseudorandom Generator: Generate deterministic random values from seed
"""
np.random.seed(seed)
return np.random.randint(0, self.modulus, size=length)
def generate_seed(self, client_id):
"""Generate deterministic seed for client"""
return hash(f'client_{client_id}_seed') % (2**32)
async def dropout_resilience(self, masked_gradients, available_clients):
"""
Handle client dropouts during aggregation
Uses secret sharing to reconstruct missing masks
"""
dropped_clients = set(masked_gradients.keys()) - set(available_clients)
if len(dropped_clients) > 0:
print(f"Handling {len(dropped_clients)} dropped clients")
# Reconstruct masks for dropped clients using secret sharing
# (Simplified - real implementation uses Shamir secret sharing)
# Create aéPiot dropout record
dropout_record = await self.aepiot_semantic.createBacklink({
'title': 'Secure Aggregation Dropout Recovery',
'description': f'Recovered from {len(dropped_clients)} client dropouts',
'link': f'secure-agg-dropout://{int(time.time())}'
})
return dropout_record
return None6.2 Advanced Differential Privacy Techniques
Rényi Differential Privacy (RDP)
Tighter privacy accounting than standard DP:
class RenyiDifferentialPrivacy:
"""
Rényi Differential Privacy - Improved privacy accounting
"""
def __init__(self, alpha=10):
self.alpha = alpha # Rényi parameter
self.aepiot_semantic = AePiotSemanticProcessor()
def compute_rdp_epsilon(self, noise_scale, sensitivity, steps):
"""
Compute RDP privacy cost
More accurate than standard DP composition
"""
# RDP epsilon for Gaussian mechanism
rdp_epsilon = (steps * sensitivity**2) / (2 * noise_scale**2 * (self.alpha - 1))
return rdp_epsilon
def convert_rdp_to_dp(self, rdp_epsilon, delta):
"""
Convert RDP to standard (ε, δ)-DP
"""
epsilon = rdp_epsilon + (np.log(1/delta)) / (self.alpha - 1)
return epsilon
async def rdp_gaussian_mechanism(self, gradients, sensitivity, target_epsilon, delta):
"""
Apply Gaussian noise with RDP accounting
"""
# Compute noise scale for target epsilon
noise_scale = self.compute_noise_scale_rdp(
sensitivity=sensitivity,
epsilon=target_epsilon,
delta=delta,
steps=1
)
# Add Gaussian noise
noise = np.random.normal(0, noise_scale, gradients.shape)
noisy_gradients = gradients + noise
# Compute actual privacy cost
rdp_epsilon = self.compute_rdp_epsilon(noise_scale, sensitivity, steps=1)
dp_epsilon = self.convert_rdp_to_dp(rdp_epsilon, delta)
# Create aéPiot RDP record
rdp_record = await self.aepiot_semantic.createBacklink({
'title': 'Rényi Differential Privacy Applied',
'description': f'RDP ε={rdp_epsilon:.4f}, converted to DP ε={dp_epsilon:.4f}, δ={delta}',
'link': f'rdp://{int(time.time())}'
})
return {
'noisy_gradients': noisy_gradients,
'rdp_epsilon': rdp_epsilon,
'dp_epsilon': dp_epsilon,
'delta': delta,
'rdp_record': rdp_record
}
def compute_noise_scale_rdp(self, sensitivity, epsilon, delta, steps):
"""Compute noise scale to achieve target epsilon with RDP"""
# Numerical solution (simplified)
noise_scale = sensitivity * np.sqrt(steps / (2 * epsilon * (self.alpha - 1)))
return noise_scaleAdaptive Differential Privacy
Adjust privacy budget based on data importance:
class AdaptiveDifferentialPrivacy:
"""
Adaptive DP: Allocate privacy budget based on iteration importance
"""
def __init__(self, total_budget=10.0, num_iterations=100):
self.total_budget = total_budget
self.num_iterations = num_iterations
self.aepiot_semantic = AePiotSemanticProcessor()
# Privacy budget allocation
self.budget_allocation = self.compute_adaptive_allocation()
def compute_adaptive_allocation(self):
"""
Allocate more privacy budget to early iterations
Early iterations more important for convergence
"""
# Exponential decay allocation
allocations = []
decay_rate = 0.1
for i in range(self.num_iterations):
# More budget for early iterations
weight = np.exp(-decay_rate * i)
allocations.append(weight)
# Normalize to total budget
total_weight = sum(allocations)
allocations = [a * self.total_budget / total_weight for a in allocations]
return allocations
async def adaptive_noise_addition(self, gradients, iteration):
"""
Add noise based on adaptive budget allocation
"""
# Get budget for this iteration
epsilon_i = self.budget_allocation[iteration]
# Compute noise scale
sensitivity = 1.0 # Assuming gradients clipped to norm 1
noise_scale = sensitivity / epsilon_i
# Add Gaussian noise
noise = np.random.normal(0, noise_scale, gradients.shape)
noisy_gradients = gradients + noise
# Track remaining budget
remaining_budget = sum(self.budget_allocation[iteration+1:])
# Create aéPiot adaptive DP record
adaptive_record = await self.aepiot_semantic.createBacklink({
'title': f'Adaptive DP - Iteration {iteration}',
'description': f'ε={epsilon_i:.4f}, Remaining budget={remaining_budget:.4f}',
'link': f'adaptive-dp://{iteration}/{int(time.time())}'
})
return {
'noisy_gradients': noisy_gradients,
'epsilon_used': epsilon_i,
'remaining_budget': remaining_budget,
'adaptive_record': adaptive_record
}6.3 Privacy Amplification through Sampling
Poisson Sampling Privacy Amplification:
class PrivacyAmplificationSampling:
"""
Privacy amplification by sampling
Selecting random subset of participants improves privacy
"""
def __init__(self, sampling_rate=0.1):
self.sampling_rate = sampling_rate
self.aepiot_semantic = AePiotSemanticProcessor()
def compute_amplified_privacy(self, base_epsilon, base_delta, sampling_rate):
"""
Compute amplified privacy guarantee
Theorem: If mechanism M is (ε, δ)-DP, then sampling q fraction
and running M gives (ε', δ')-DP where:
ε' ≈ q·ε (for small ε)
δ' ≈ q·δ
"""
amplified_epsilon = sampling_rate * base_epsilon
amplified_delta = sampling_rate * base_delta
# More precise formula (from privacy amplification theorem)
if base_epsilon < 1:
amplified_epsilon = np.log(1 + sampling_rate * (np.exp(base_epsilon) - 1))
return amplified_epsilon, amplified_delta
async def poisson_sampling_aggregation(self, all_participants, base_epsilon, base_delta):
"""
Federated learning with Poisson sampling
"""
# Sample participants (Poisson sampling)
sampled_participants = []
for participant in all_participants:
if np.random.random() < self.sampling_rate:
sampled_participants.append(participant)
actual_sampling_rate = len(sampled_participants) / len(all_participants)
# Compute amplified privacy
amplified_epsilon, amplified_delta = self.compute_amplified_privacy(
base_epsilon=base_epsilon,
base_delta=base_delta,
sampling_rate=actual_sampling_rate
)
# Aggregate sampled participants
# Apply base DP mechanism to aggregation
# Create aéPiot amplification record
amplification_record = await self.aepiot_semantic.createBacklink({
'title': 'Privacy Amplification by Sampling',
'description': f'Sampled {len(sampled_participants)}/{len(all_participants)} participants. ' +
f'Amplified privacy: (ε={amplified_epsilon:.4f}, δ={amplified_delta:.8f})',
'link': f'privacy-amplification://{int(time.time())}'
})
return {
'sampled_participants': sampled_participants,
'amplified_epsilon': amplified_epsilon,
'amplified_delta': amplified_delta,
'amplification_factor': base_epsilon / amplified_epsilon,
'amplification_record': amplification_record
}6.4 Local Differential Privacy (LDP)
Strongest privacy model: Noise added before sending data
class LocalDifferentialPrivacy:
"""
Local Differential Privacy: Each client adds noise locally
Provides privacy even against malicious aggregator
"""
def __init__(self, epsilon=1.0):
self.epsilon = epsilon
self.aepiot_semantic = AePiotSemanticProcessor()
def randomized_response(self, true_value, epsilon):
"""
Randomized Response mechanism for binary values
Classic LDP technique
"""
# Probability of reporting true value
p = np.exp(epsilon) / (np.exp(epsilon) + 1)
# Flip coin
if np.random.random() < p:
return true_value
else:
return 1 - true_value
def laplace_mechanism_local(self, value, sensitivity, epsilon):
"""
Local Laplace mechanism for numeric values
"""
# Laplace noise scale
scale = sensitivity / epsilon
# Add Laplace noise
noise = np.random.laplace(0, scale)
noisy_value = value + noise
return noisy_value
async def local_gradient_perturbation(self, gradients, epsilon):
"""
Each client perturbs their gradients locally with LDP
"""