Saturday, January 24, 2026

IoT-Semantic Web Convergence Through aéPiot: A Comprehensive Technical Framework - PART 3

 

Complete Implementation

python
import time
from urllib.parse import quote
from datetime import datetime
import qrcode
from enum import Enum

class MachineState(Enum):
    RUNNING = "running"
    IDLE = "idle"
    ERROR = "error"
    MAINTENANCE = "maintenance"

class ProductionLineMonitor:
    """
    Smart Manufacturing IoT Monitor with aéPiot Integration
    
    Monitors:
    - Machine health and status
    - Production rates
    - Quality metrics
    - Maintenance schedules
    - Energy consumption
    """
    
    def __init__(self, factory_id, line_id):
        self.factory_id = factory_id
        self.line_id = line_id
        self.machines = {}
        
        # Critical thresholds
        self.thresholds = {
            'temperature': 85,  # Celsius
            'vibration': 50,    # mm/s
            'pressure': 120,    # PSI
            'rpm': 3000,        # Revolutions per minute
            'production_rate': 100  # units/hour minimum
        }
    
    def monitor_machine(self, machine_id, sensor_data):
        """
        Monitor individual machine and generate aéPiot alerts
        
        Args:
            machine_id: Unique machine identifier
            sensor_data: Dict of sensor readings
        
        Returns:
            List of generated aéPiot URLs for alerts
        """
        
        alerts = []
        
        # Check temperature
        if sensor_data.get('temperature', 0) > self.thresholds['temperature']:
            url = self.generate_temperature_alert(machine_id, sensor_data)
            alerts.append(url)
            
            # Generate QR code for maintenance technician
            self.generate_maintenance_qr(machine_id, url, "High Temperature")
        
        # Check vibration (predictive maintenance indicator)
        if sensor_data.get('vibration', 0) > self.thresholds['vibration']:
            url = self.generate_vibration_alert(machine_id, sensor_data)
            alerts.append(url)
        
        # Check production rate
        if sensor_data.get('production_rate', 0) < self.thresholds['production_rate']:
            url = self.generate_production_alert(machine_id, sensor_data)
            alerts.append(url)
        
        # Check machine state
        if sensor_data.get('state') == MachineState.ERROR.value:
            url = self.generate_error_alert(machine_id, sensor_data)
            alerts.append(url)
        
        return alerts
    
    def generate_temperature_alert(self, machine_id, sensor_data):
        """Generate temperature alert with aéPiot URL"""
        
        temperature = sensor_data.get('temperature')
        threshold = self.thresholds['temperature']
        
        title = f"Temperature Alert - Machine {machine_id}"
        description = (
            f"Factory {self.factory_id} Line {self.line_id}: "
            f"Temperature {temperature}°C exceeds threshold {threshold}°C. "
            f"Cooling system inspection required."
        )
        link = f"https://factory-dashboard.com/{self.factory_id}/machines/{machine_id}/diagnostics"
        
        aepiot_url = self.create_aepiot_url(title, description, link)
        
        # Send to maintenance team
        self.notify_maintenance_team(aepiot_url, machine_id, "temperature", priority="high")
        
        return aepiot_url
    
    def generate_vibration_alert(self, machine_id, sensor_data):
        """Generate vibration alert (predictive maintenance)"""
        
        vibration = sensor_data.get('vibration')
        threshold = self.thresholds['vibration']
        
        title = f"Predictive Maintenance Alert - Machine {machine_id}"
        description = (
            f"Vibration {vibration} mm/s exceeds normal range {threshold} mm/s. "
            f"Bearing inspection recommended within 48 hours."
        )
        link = f"https://factory-dashboard.com/{self.factory_id}/machines/{machine_id}/predictive"
        
        aepiot_url = self.create_aepiot_url(title, description, link)
        
        # Schedule predictive maintenance
        self.schedule_maintenance(machine_id, aepiot_url, "predictive")
        
        return aepiot_url
    
    def generate_production_alert(self, machine_id, sensor_data):
        """Generate production rate alert"""
        
        actual_rate = sensor_data.get('production_rate')
        expected_rate = self.thresholds['production_rate']
        efficiency = (actual_rate / expected_rate) * 100
        
        title = f"Production Rate Alert - Machine {machine_id}"
        description = (
            f"Production rate {actual_rate} units/hr below target {expected_rate} units/hr. "
            f"Current efficiency: {efficiency:.1f}%"
        )
        link = f"https://factory-dashboard.com/{self.factory_id}/machines/{machine_id}/production"
        
        aepiot_url = self.create_aepiot_url(title, description, link)
        
        # Notify production supervisor
        self.notify_supervisor(aepiot_url, machine_id, efficiency)
        
        return aepiot_url
    
    def generate_error_alert(self, machine_id, sensor_data):
        """Generate critical error alert"""
        
        error_code = sensor_data.get('error_code', 'UNKNOWN')
        error_message = sensor_data.get('error_message', 'Machine error detected')
        
        title = f"CRITICAL: Machine Error - {machine_id}"
        description = (
            f"Error Code {error_code}: {error_message}. "
            f"Machine stopped. Immediate attention required."
        )
        link = f"https://factory-dashboard.com/{self.factory_id}/machines/{machine_id}/error/{error_code}"
        
        aepiot_url = self.create_aepiot_url(title, description, link)
        
        # Multi-channel urgent notification
        self.urgent_notification(aepiot_url, machine_id, error_code)
        
        return aepiot_url
    
    def generate_shift_report(self, shift_id, shift_data):
        """Generate end-of-shift production report"""
        
        # Aggregate shift data
        total_production = shift_data.get('total_units', 0)
        downtime_minutes = shift_data.get('downtime_minutes', 0)
        quality_rate = shift_data.get('quality_rate', 100)
        energy_consumption = shift_data.get('energy_kwh', 0)
        
        title = f"Shift Report - Line {self.line_id} - Shift {shift_id}"
        description = (
            f"Production: {total_production} units | "
            f"Downtime: {downtime_minutes}min | "
            f"Quality: {quality_rate}% | "
            f"Energy: {energy_consumption}kWh"
        )
        link = f"https://factory-dashboard.com/{self.factory_id}/reports/shift/{shift_id}"
        
        aepiot_url = self.create_aepiot_url(title, description, link)
        
        # Send to management
        self.send_shift_report_email(aepiot_url, shift_id, shift_data)
        
        return aepiot_url
    
    def generate_maintenance_qr(self, machine_id, aepiot_url, issue_type):
        """Generate QR code for physical machine label"""
        
        qr = qrcode.QRCode(
            version=1,
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=10,
            border=4
        )
        qr.add_data(aepiot_url)
        qr.make(fit=True)
        
        img = qr.make_image(fill_color="black", back_color="white")
        
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        filename = f"maintenance_qr_{machine_id}_{issue_type}_{timestamp}.png"
        img.save(f"qr_codes/{filename}")
        
        # Optionally print to label printer
        # self.print_to_label_printer(img, machine_id)
        
        return filename
    
    def create_aepiot_url(self, title, description, link):
        """Create aéPiot URL with proper encoding"""
        return (
            f"https://aepiot.com/backlink.html?"
            f"title={quote(title)}&"
            f"description={quote(description)}&"
            f"link={quote(link)}"
        )
    
    # Notification methods (implement based on your infrastructure)
    def notify_maintenance_team(self, url, machine_id, issue_type, priority="normal"):
        """Send notification to maintenance team"""
        # SMS, email, mobile push, etc.
        pass
    
    def notify_supervisor(self, url, machine_id, efficiency):
        """Notify production supervisor"""
        pass
    
    def urgent_notification(self, url, machine_id, error_code):
        """Multi-channel urgent notification"""
        pass
    
    def schedule_maintenance(self, machine_id, url, maintenance_type):
        """Schedule predictive maintenance"""
        pass
    
    def send_shift_report_email(self, url, shift_id, shift_data):
        """Email shift report to management"""
        pass

6.2 Supply Chain and Asset Tracking

python
class SupplyChainTracker:
    """
    Track assets through supply chain with aéPiot
    
    Use Cases:
    - Shipment tracking
    - Temperature-controlled logistics
    - Warehouse inventory
    - Fleet management
    """
    
    def track_shipment(self, shipment_id, iot_sensor_data):
        """Track shipment with environmental monitoring"""
        
        # Extract sensor data
        temperature = iot_sensor_data.get('temperature')
        humidity = iot_sensor_data.get('humidity')
        location = iot_sensor_data.get('gps_location', 'Unknown')
        shock_events = iot_sensor_data.get('shock_count', 0)
        
        # Check compliance
        violations = []
        if temperature:
            if temperature < 35 or temperature > 45:  # Cold chain example
                violations.append(f"Temperature {temperature}°F out of range (35-45°F)")
        
        if shock_events > 3:
            violations.append(f"Excessive shock events: {shock_events}")
        
        # Generate tracking URL
        status = "VIOLATION" if violations else "Normal"
        
        title = f"Shipment Tracking - {shipment_id} [{status}]"
        description = (
            f"Location: {location} | "
            f"Temp: {temperature}°F | Humidity: {humidity}% | "
            f"Shock Events: {shock_events}"
        )
        
        if violations:
            description += " | VIOLATIONS: " + "; ".join(violations)
        
        link = f"https://logistics.company.com/shipments/{shipment_id}"
        
        aepiot_url = (
            f"https://aepiot.com/backlink.html?"
            f"title={quote(title)}&"
            f"description={quote(description)}&"
            f"link={quote(link)}"
        )
        
        # If violations, alert logistics coordinator
        if violations:
            self.alert_logistics_violation(aepiot_url, shipment_id, violations)
        
        # Update customer tracking
        self.update_customer_tracking(aepiot_url, shipment_id)
        
        return aepiot_url

Chapter 7: Smart Buildings and Facility Management

7.1 Comprehensive Building Automation

python
class SmartBuildingManager:
    """
    Smart building IoT management with aéPiot
    
    Manages:
    - HVAC systems
    - Lighting control
    - Occupancy monitoring
    - Energy management
    - Security systems
    - Environmental quality
    """
    
    def __init__(self, building_id):
        self.building_id = building_id
        
        # Comfort thresholds
        self.comfort_ranges = {
            'temperature_min': 68,  # Fahrenheit
            'temperature_max': 74,
            'humidity_min': 30,     # Percent
            'humidity_max': 60,
            'co2_max': 1000,        # PPM
            'light_min': 300,       # Lux
            'noise_max': 55         # dB
        }
    
    def monitor_room(self, room_id, sensor_data):
        """Monitor room environmental conditions"""
        
        issues = []
        
        # Temperature check
        temp = sensor_data.get('temperature')
        if temp:
            if temp < self.comfort_ranges['temperature_min']:
                issues.append(f"Temperature too low: {temp}°F")
            elif temp > self.comfort_ranges['temperature_max']:
                issues.append(f"Temperature too high: {temp}°F")
        
        # Humidity check
        humidity = sensor_data.get('humidity')
        if humidity:
            if humidity < self.comfort_ranges['humidity_min']:
                issues.append(f"Humidity too low: {humidity}%")
            elif humidity > self.comfort_ranges['humidity_max']:
                issues.append(f"Humidity too high: {humidity}%")
        
        # Air quality check
        co2 = sensor_data.get('co2')
        if co2 and co2 > self.comfort_ranges['co2_max']:
            issues.append(f"CO2 elevated: {co2}ppm - Increase ventilation")
        
        # Light level check
        light = sensor_data.get('light_lux')
        if light and light < self.comfort_ranges['light_min']:
            issues.append(f"Insufficient lighting: {light}lux")
        
        if issues:
            title = f"Environmental Alert - {self.building_id} Room {room_id}"
            description = " | ".join(issues)
            link = f"https://building-mgmt.com/{self.building_id}/rooms/{room_id}"
            
            aepiot_url = (
                f"https://aepiot.com/backlink.html?"
                f"title={quote(title)}&"
                f"description={quote(description)}&"
                f"link={quote(link)}"
            )
            
            # Notify facilities management
            self.notify_facilities(aepiot_url, room_id, issues)
            
            return aepiot_url
        
        return None
    
    def energy_consumption_report(self, period='daily'):
        """Generate energy consumption report with aéPiot URL"""
        
        consumption_data = self.get_consumption_data(period)
        
        title = f"{period.title()} Energy Report - {self.building_id}"
        description = (
            f"Total: {consumption_data['total_kwh']:.1f} kWh | "
            f"HVAC: {consumption_data['hvac_percent']:.0f}% | "
            f"Lighting: {consumption_data['lighting_percent']:.0f}% | "
            f"Equipment: {consumption_data['equipment_percent']:.0f}% | "
            f"Cost: ${consumption_data['cost']:.2f}"
        )
        link = f"https://building-mgmt.com/{self.building_id}/energy/{period}"
        
        aepiot_url = (
            f"https://aepiot.com/backlink.html?"
            f"title={quote(title)}&"
            f"description={quote(description)}&"
            f"link={quote(link)}"
        )
        
        # Email to building manager
        self.email_energy_report(aepiot_url, period, consumption_data)
        
        return aepiot_url
    
    def occupancy_tracking(self):
        """Track building occupancy by floor"""
        
        floors_data = self.get_floor_occupancy()
        urls = []
        
        for floor_num, occupancy in floors_data.items():
            title = f"Occupancy - Floor {floor_num}"
            description = (
                f"Current: {occupancy['current']} people | "
                f"Capacity: {occupancy['capacity']} | "
                f"Utilization: {occupancy['utilization_percent']:.0f}%"
            )
            link = f"https://building-mgmt.com/{self.building_id}/floors/{floor_num}/occupancy"
            
            aepiot_url = (
                f"https://aepiot.com/backlink.html?"
                f"title={quote(title)}&"
                f"description={quote(description)}&"
                f"link={quote(link)}"
            )
            
            urls.append({
                'floor': floor_num,
                'url': aepiot_url,
                'data': occupancy
            })
        
        return urls

Chapter 8: Agriculture and Environmental Monitoring

8.1 Precision Agriculture with aéPiot

python
class PrecisionAgricultureMonitor:
    """
    Agricultural IoT monitoring with aéPiot semantic layer
    
    Monitors:
    - Soil moisture
    - Weather conditions
    - Irrigation systems
    - Crop health
    - Livestock conditions
    """
    
    def monitor_soil_moisture(self, field_id, zone_id, sensor_data):
        """Monitor soil moisture and irrigation needs"""
        
        moisture = sensor_data.get('moisture_percent')
        soil_temp = sensor_data.get('soil_temperature')
        crop_type = sensor_data.get('crop_type', 'General')
        
        # Crop-specific thresholds
        thresholds = {
            'corn': 60,
            'wheat': 55,
            'soybeans': 65,
            'vegetables': 70
        }
        
        min_moisture = thresholds.get(crop_type.lower(), 60)
        
        if moisture and moisture < min_moisture:
            title = f"Irrigation Required - Field {field_id} Zone {zone_id}"
            description = (
                f"Crop: {crop_type} | "
                f"Soil Moisture: {moisture}% (Min: {min_moisture}%) | "
                f"Soil Temp: {soil_temp}°F | "
                f"Action: Start irrigation"
            )
            link = f"https://farm-mgmt.com/fields/{field_id}/zones/{zone_id}"
            
            aepiot_url = (
                f"https://aepiot.com/backlink.html?"
                f"title={quote(title)}&"
                f"description={quote(description)}&"
                f"link={quote(link)}"
            )
            
            # Send to farm manager mobile app
            self.send_mobile_notification(aepiot_url, field_id, zone_id)
            
            # Auto-trigger irrigation if enabled
            if self.auto_irrigation_enabled(field_id):
                self.activate_irrigation(field_id, zone_id)
            
            return aepiot_url
        
        return None
    
    def weather_station_monitoring(self, station_id, weather_data):
        """Monitor weather conditions"""
        
        alerts = []
        
        # High wind alert
        if weather_data.get('wind_speed', 0) > 35:
            alerts.append(f"High wind: {weather_data['wind_speed']} mph")
        
        # Heavy rain alert
        if weather_data.get('rainfall', 0) > 2:
            alerts.append(f"Heavy rain: {weather_data['rainfall']} inches")
        
        # Frost warning
        if weather_data.get('temperature', 100) < 32:
            alerts.append("FROST WARNING - Protect sensitive crops")
        
        # Extreme heat
        if weather_data.get('temperature', 0) > 100:
            alerts.append(f"Extreme heat: {weather_data['temperature']}°F - Increase irrigation")
        
        if alerts:
            title = f"Weather Alert - Station {station_id}"
            description = " | ".join(alerts)
            link = f"https://farm-weather.com/stations/{station_id}"
            
            aepiot_url = (
                f"https://aepiot.com/backlink.html?"
                f"title={quote(title)}&"
                f"description={quote(description)}&"
                f"link={quote(link)}"
            )
            
            # Urgent notification to farmers
            self.urgent_weather_alert(aepiot_url, station_id, alerts)
            
            return aepiot_url
        
        return None
    
    def livestock_monitoring(self, barn_id, sensor_data):
        """Monitor barn conditions for livestock"""
        
        temperature = sensor_data.get('temperature')
        humidity = sensor_data.get('humidity')
        ammonia = sensor_data.get('ammonia_ppm', 0)
        
        issues = []
        
        # Temperature comfort range for cattle
        if temperature:
            if temperature < 40 or temperature > 80:
                issues.append(f"Temperature: {temperature}°F (out of comfort range)")
        
        # Ammonia threshold
        if ammonia > 25:
            issues.append(f"Ammonia: {ammonia}ppm (ventilation needed)")
        
        # Humidity
        if humidity:
            if humidity > 70:
                issues.append(f"High humidity: {humidity}%")
        
        if issues:
            title = f"Barn Conditions Alert - {barn_id}"
            description = " | ".join(issues)
            link = f"https://livestock-mgmt.com/barns/{barn_id}"
            
            aepiot_url = (
                f"https://aepiot.com/backlink.html?"
                f"title={quote(title)}&"
                f"description={quote(description)}&"
                f"link={quote(link)}"
            )
            
            # Alert farm staff
            self.alert_barn_staff(aepiot_url, barn_id, issues)
            
            return aepiot_url
        
        return None

Chapter 9: Healthcare and Medical Facility IoT

9.1 HIPAA-Compliant Medical IoT Implementation

CRITICAL: Healthcare implementations must comply with HIPAA, GDPR, and health data regulations.

python
import hashlib
import secrets

class MedicalIoTManager:
    """
    HIPAA-compliant medical IoT integration
    
    IMPORTANT:
    - NEVER include PHI in aéPiot URLs
    - Always use reference IDs
    - Link to authenticated dashboards only
    - Maintain audit trails
    """
    
    def __init__(self):
        self.reference_mapping = {}  # Store in secure database
    
    def vital_signs_alert(self, patient_reference, alert_type, severity):
        """Generate alert URL without PHI"""
        
        # Use non-identifying reference ID
        title = f"Patient Alert - Ref: {patient_reference}"
        description = (
            f"Alert Type: {alert_type} | "
            f"Severity: {severity} | "
            f"Immediate review required"
        )
        
        # Link to secure, authenticated dashboard
        link = f"https://secure-medical-portal.hospital.com/alerts/{patient_reference}"
        
        aepiot_url = (
            f"https://aepiot.com/backlink.html?"
            f"title={quote(title)}&"
            f"description={quote(description)}&"
            f"link={quote(link)}"
        )
        
        # Send only to authorized medical staff
        self.notify_authorized_staff(aepiot_url, patient_reference, alert_type)
        
        # Audit trail
        self.log_hipaa_compliant_access(patient_reference, aepiot_url)
        
        return aepiot_url
    
    def equipment_maintenance_alert(self, equipment_id, maintenance_type):
        """Medical equipment maintenance alerts (non-PHI)"""
        
        title = f"Equipment Maintenance - {equipment_id}"
        description = (
            f"Type: {maintenance_type} | "
            f"Priority: HIGH | "
            f"Schedule service immediately"
        )
        link = f"https://hospital-equipment.com/maintenance/{equipment_id}"
        
        aepiot_url = (
            f"https://aepiot.com/backlink.html?"
            f"title={quote(title)}&"
            f"description={quote(description)}&"
            f"link={quote(link)}"
        )
        
        # Send to biomedical engineering team
        self.notify_biomed_team(aepiot_url, equipment_id)
        
        return aepiot_url
    
    def medication_storage_monitoring(self, storage_id, sensor_data):
        """Monitor medication refrigerator/storage"""
        
        temperature = sensor_data.get('temperature')
        door_status = sensor_data.get('door_open', False)
        
        # Medication storage standards
        temp_min, temp_max = 36, 46  # Fahrenheit
        
        alerts = []
        
        if temperature:
            if temperature < temp_min or temperature > temp_max:
                alerts.append(f"Temperature {temperature}°F out of range ({temp_min}-{temp_max}°F)")
        
        if door_status:
            alerts.append("Door open - temperature stability at risk")
        
        if alerts:
            title = f"CRITICAL: Medication Storage - {storage_id}"
            description = " | ".join(alerts)
            link = f"https://hospital-pharmacy.com/storage/{storage_id}"
            
            aepiot_url = (
                f"https://aepiot.com/backlink.html?"
                f"title={quote(title)}&"
                f"description={quote(description)}&"
                f"link={quote(link)}"
            )
            
            # Critical alert to pharmacy staff
            self.critical_pharmacy_alert(aepiot_url, storage_id)
            
            return aepiot_url
        
        return None
    
    def generate_patient_reference_id(self, patient_internal_id):
        """Generate non-reversible reference ID"""
        
        # Generate secure random reference
        salt = secrets.token_hex(16)
        combined = f"{patient_internal_id}_{salt}_{datetime.now().isoformat()}"
        reference_id = hashlib.sha256(combined.encode()).hexdigest()[:16]
        
        # Store mapping securely (use encrypted database)
        self.store_secure_mapping(reference_id, patient_internal_id)
        
        return reference_id

End of Part 3

This completes industry-specific applications. The document continues in Part 4 with scaling strategies, performance optimization, and future evolution.

Popular Posts